Voxel-Based Thickness Analysis of Intricate Objects
نویسندگان
چکیده
Thickness is a commonly used parameter in product design and manufacture. Its intuitive definition as the smallest dimension of a cross-section or the minimum distance between two opposite surfaces is ambiguous for intricate solids, and there is very little reported work in automatic computation of thickness. We present three generic definitions of thickness: interior thickness of points inside an object, exterior thickness for points on the object surface, and radiographic thickness along a view direction. Methods for computing and displaying the respective thickness values are also presented. The internal thickness distribution is obtained by peeling or successive skin removal, eventually revealing the object skeleton (similar to medial axis transformation). Another method involves radiographic scanning normal to a viewing direction, with minimum, maximum and total thickness options, displayed on the surface of the object. The algorithms have been implemented using an efficient voxel based representation that can handle up to one billion voxels (1000 per axis), coupled with a near-real time display scheme that uses a look-up table based on voxel neighborhood configurations. Three different types of intricate objects: industrial (press cylinder casting), sculpture (Ganesha idol), and medical (pelvic bone) were used for successfully testing the algorithms. The results are found to be useful for early evaluation of manufacturability and other lifecycle considerations.
منابع مشابه
P 24: Evaluation of the Voxel Based Morphometry in Quantitative Analysis of Brain MRI Images
Introduction: Voxel based morphometry is a type of statistical parametric mapping that can be used to investigate the effect of diseases such as epilepsy, Alzheimer's disease and Parkinson's disease or other agent such as skills on brain structure (white matter, gray matter and cerebrospinal fluid). The aim of this study is evaluate the effectiveness of this method in detection of differen...
متن کاملDetecting statistically significant changes in cartilage thickness with sub-voxel precision
Introduction: MRI-based quantification of the cartilage thickness is a robust and well validated technique for the assessment of cartilage degradation in osteoarthritis [1], and for the analysis of cartilage deformations after exercise [2]. Nowadays changes in cartilage thickness are evaluated by comparing averaged thickness over regions defined on an anatomical basis [1]. However, the combinat...
متن کاملVoxel-based cortical thickness measurements in MRI
The thickness of the cerebral cortex can provide valuable information about normal and abnormal neuroanatomy. High resolution MRI together with powerful image processing techniques has made it possible to perform these measurements automatically over the whole brain. Here we present a method for automatically generating voxel-based cortical thickness (VBCT) maps. This technique results in maps ...
متن کاملPrediction of Human Vertebral Compressive Strength Using Quantitative Computed Tomography Based Nonlinear Finite Element Method
Introduction: Because of the importance of vertebral compressive fracture (VCF) role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD) determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite eleme...
متن کاملInfluence of T1-Weighted Signal Intensity on FSL Voxel-Based Morphometry and FreeSurfer Cortical Thickness.
The effect of T1 signal on FSL voxel-based morphometry modulated GM density and FreeSurfer cortical thickness is explored. The techniques rely on different analyses, but both are commonly used to detect spatial changes in GM. Standard pipelines show FSL voxel-based morphometry is sensitive to T1 signal alterations within a physiologic range, and results can appear discordant between FSL voxel-b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006